Conclusion: The choice of anti-malarial drug should be an evidenc

Conclusion: The choice of anti-malarial drug should be an evidence-based decision that considers the profile of the individual traveller and the risk of malaria. Mefloquine is an important, first-line anti-malarial drug but it is crucial for prescribers to screen medical histories and inform mefloquine users of potential adverse events. Careful prescribing and observance of contraindications are essential. For some indications, there is currently no replacement for mefloquine available or in the pipeline.”
“It is proposed that post-harvest longevity and appearance of salad crops is closely linked to pre-harvest

leaf morphology signaling pathway (cell and leaf size) and biophysical structure (leaf strength). Transgenic lettuce plants (Lactuca sativa cv. Valeria) were produced in which the production of the cell wall-modifying enzyme xyloglucan endotransglucosylase/hydrolase (XTH) was down-regulated

by antisense inhibition. Independently transformed lines were shown to have multiple members of the LsXTH gene family down-regulated in mature leaves of 6-week-old plants and during the course of shelf life. Consequently, buy Compound Library xyloglucan endotransglucosylase (XET) enzyme activity and action were down-regulated in the cell walls of these leaves and it was established that leaf area and fresh weight were decreased while leaf strength was increased in the transgenic 17DMAG mouse lines. Membrane permeability was reduced towards the end of shelf life in the transgenic lines relative to the controls and bacteria were evident inside the leaves of control plants only. Most importantly, an extended shelf-life of transgenic lines

was observed relative to the non-transgenic control plants. These data illustrate the potential for engineering cell wall traits for improving quality and longevity of salad crops using either genetic modification directly, or by using markers associated with XTH genes to inform a commercial breeding programme.”
“Wood-polymer composites (WPCs) were prepared from poplar wood (P. ussuriensis Komarov) in a two-step procedure. Maleic anhydride (MAN) was first dissolved in acetone and impregnated into wood; this was followed by a heat process; and then, glycidyl methacrylate (GMA) and styrene (St) were further impregnated into the MAN-treated wood, followed by a second thermal treatment. Finally, the novel WPC was fabricated. The reactions occurring in the WPC, the aggregation of the resulting polymers, and their interaction with the wood substrate were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and dynamic mechanical analysis. The performance of WPC was also evaluated in terms of the mechanical properties and durability, which were then correlated with the structural analysis of the WPC.

Comments are closed.