However, further prospective study involving a larger patient coh

However, further prospective study involving a larger patient cohort with a longer followup period is required to confirm the results.”
“Functional electrical stimulation (FES) is a general term for therapeutic methods that use electrical stimulation to aid LY2090314 or replace lost ability. For FES systems that communicate with the nervous system, one critical component is the electrode interface through which the machine-body information transfer must occur. In this paper, we examine the influence of inhomogeneous tissue conductivities and positions of nodes of Ranvier on activation of myelinated axons for neuromuscular control as a function of electrode configuration. To evaluate these effects, we developed a high-resolution

bioelectric model of a fascicle from a stained cross-section of cat sciatic nerve. The model was constructed by digitizing a fixed specimen of peripheral nerve, extruding the image along the axis of the nerve, and assigning each anatomical component to one of several different tissue types.

Electrodes were represented by current sources in monopolar, transverse bipolar, and longitudinal bipolar configurations; neural activation was determined using coupled field-neuron simulations with myelinated axon cable models. We found that the use of an isotropic tissue medium overestimated neural activation thresholds compared with the use of physiologically based, inhomogeneous tissue medium, even after controlling for mean impedance levels. Additionally, the positions of the cathodic sources relative to the nodes of Ranvier had substantial effects on activation, and these effects were modulated by the electrode configuration. Bioactive Compound Library Our results indicate that physiologically based tissue properties cause considerable variability in

the neural response, and the inclusion of these properties is an important component in accurately selleck screening library predicting activation. The results are used to suggest new electrode designs to enable selective stimulation of small diameter fibers.”
“Plants must acquire at least 14 mineral nutrients from the soil to complete their life cycles. Insufficient availability or extreme high levels of the nutrients significantly affect plant growth and development. Plants have evolved a series of mechanisms to adapt to unsuitable growth conditions where nutrient levels are too low or too high. microRNAs (miRNAs), a class of small RNAs, are known to mediate post-transcriptional regulation by transcript cleavage or translational inhibition. Besides regulating plant growth and development, miRNAs are well documented to regulate plant adaptation to adverse environmental conditions including nutrient stresses.\n\nIn this review, we focus on recent progress in our understanding of how miRNAs are involved in plant response to stresses resulting from deficiency in nutrients, such as nitrogen, phosphorus, sulfur, copper and iron, as well as toxicities from heavy metal ions.

Comments are closed.