Participants in the control group will receive usual care All pa

Participants in the control group will receive usual care. All participants will receive an individual education session.\n\nFollow-up:

measurements will be performed at practices 9 months check details after randomization by research nurses blinded to allocation. The primary outcome measure is HbA1c and secondary outcomes measure are daytime systolic and diastolic blood pressure, weight and cost per quality-adjusted life year.\n\nAnalysis: intention-to-treat analyses will be performed. The sample size of 320 participants allows for 20% drop-out and has 80% power at 5% significance to detect a 0.5% absolute (6 mmol/mol) fall in HbA1c in the intervention group. The qualitative study will explore the experiences of patients and professionals using the intervention.”
“The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints.

The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely Selleckchem EPZ5676 or chronically implanted Utah Slanted

Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee CH5424802 inhibitor and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

Comments are closed.