Fusion of these mutant proteins to the 10F7 scFv significantly re

Fusion of these mutant proteins to the 10F7 scFv significantly rescued the activity of the mutant proteins, but had a relatively small effect on wild-type Epo. For example, fusion to the 10F7 scFv enhanced the activity of Epo(R150A) by 10-to 27-fold, while a corresponding fusion to wild-type Epo enhanced its activity only up to 2.7-fold. When glycophorin was blocked by antibody competition or reduced by siRNA-mediated inhibition

of expression, the activity of 10F7 scFvEpo(R150A) was correspondingly reduced, while such inhibition had essentially no effect on the activity of 10F7 scFv-Epo(wild-type). In addition, potent stimulation of Epo receptors by 10F7 scFv-Epo(R150A) was observed in long-term proliferation and viability assays. Taken together, these results indicate that a combination of targeting and LCZ696 in vivo affinity modulation S3I-201 purchase can be used to engineer forms of Epo with enhanced cell-type specificity.”
“Introduction: Affibody

molecules, small scaffold proteins, have demonstrated an appreciable potential as imaging probes. Affibody molecules are composed of three alpha-helices. Helices 1 and 2 are involved in molecular recognition, while helix 3 provides stability. The size of Affibody molecules can be reduced by omitting the third alpha-helix and cross-linking the two remaining, providing a smaller molecule with better extravasation and quicker clearance of unbound tracer. The goal of this study was to develop a novel 2-helix Affibody molecule based on backbone cyclization by native chemical ligation (NCL).

Methods: The HER2-targeting NCL-cyclized Affibody molecule Z(HER2:342min) has been designed, synthesized and site-specifically conjugated with a DOTA chelator. DOTA-Z(HER2:342min) was labeled with In-111 and (68) Ga. The binding affinity of DOTA-Z(HER2:342min) was evaluated in vitro. The targeting properties of In-111- and (68) Ga-DOTA-Z(HER2:342min) were evaluated in mice bearing SKOV-3 xenografts and compared http://www.selleck.co.jp/products/MDV3100.html with the properties of In-111- and (68) Ga-labeled PEP09239, a DOTA-conjugated 2-helix Affibody analogue cyclized by a homocysteine disulfide bridge.

Results: The dissociation constant (K-D) for

DOTA-Z(HER2:342min) binding to HER2 was 18 nM according to SPR measurements. DOTA-Z(HER2:342min) was labeled with In-111 and (68) Ga. Both conjugates demonstrated bi-phasic binding kinetics to HER2-expressing cells, with K-D1 in low nanbmolar range. Both variants demonstrated specific uptake in HER2-expressing xenografts. Tumor-to-blood ratios at 2 h p.i. were 6.1 +/- 1.3 for In-111-DOTA-Z(HER2:342min) and 4.6 +/- 0.7 for (68) Ga-DOTA-Z(HER2:342min). However, the uptake of DOTA-Z(HER2:342min) in lung, liver and spleen was appreciably higher than the uptake of PEP09239-based counterparts.

Conclusions: Native chemical ligation enables production of a backbone-cyclized HER2-binding 2-helix Affibody molecule (Z(HER2:342min)) with low nanomolar target affinity and specific tumor uptake. (C) 2013 Elsevier Inc.

Comments are closed.