J Nanopart Res 2013, 15:1571 CrossRef 38 Kolasinski KW: Catalyti

J Nanopart Res 2013, 15:1571.CrossRef 38. Kolasinski KW: Catalytic growth of nanowires: vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Curr Opin Solid State Mater Sci 2006, 10:182–191.CrossRef 39. Zhang Z, Wang SJ, Yu T, Wu T: Controlling the growth selleck chemicals llc mechanism of ZnO nanowires by selecting catalysts. J Phys Chem C 2007, 111:17500–17505.CrossRef

40. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H: Control growth of ZnO nanowires and their optical properties. Adv Funct Mater 2002, 12:323–331.CrossRef 41. Kim BJ, Tersoff J, Kodambaka S, Reuter MC, Stach EA, Ross FM: Kinetic of individual nucleation events observed in nanoscale vapor–liquid-solid growth. Science Epigenetics inhibitor 2008, 322:1070–1073.CrossRef 42. Pstrus J, Moser Z, Gasior W: Surface properties of liquid

In–Zn alloys. Appl Surf Sci 2011, 257:3867–3871.CrossRef 43. Gao PX, Ding Y, Wang ZL: Crystallographic orientation-aligned ZnO nanorods growth by a tin catalyst. Nano Lett 2003, 3:1315–1320.CrossRef 44. Gao P, Wang ZL: Self-assembled nanowire−nanoribbon junction arrays of ZnO. J Phys Chem B 2002, 106:12653–12658.CrossRef 45. Hara H, Shiro T, Yatabe this website T: Optimization and properties of Zn doped indium oxide films on plastic substrate. Jpn J Appl Phys 2004, 43:745–749.CrossRef 46. Wang CY, Liu CP, Shen HW, Chen YJ, Kuo CL, Wang TY, Zheng RK, Ringer SP: Growth and valence excitations of ZnO:M(Al, In, Sn) hierarchical nanostructures. J Phys Chem C 2010, 114:18031–18036.CrossRef

47. Fang Y, Wang Y, Wan Y, Wang Z, Sha J: Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation. J Phys Chem C 2010, 114:12469–12476.CrossRef 48. Jean ST, Her YC: Growth mechanism and photoluminescence properties of In2O3 nanotowers. Cryst Growth Des 2010, 10:2104–2110.CrossRef 49. Bera A, Basak D: Photoluminescence and photoconductivity of ZnS-coated ZnO nanowires. ACS Appl Mater Interfaces 2010, 2:408–412.CrossRef 50. Chang YM, Shieh J, Chu PY, Lee HY, Lin CM, Juang JY: Enhanced free exciton and direct band-edge emissions at room Ribonucleotide reductase temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition. ACS Appl Mater Interfaces 2011, 3:4415–4419.CrossRef 51. Wang D, Seo HW, Tin CC, Bozack MJ, Williams JR, Park M, Sathitsuksanoh N, Cheng AJ, Tzeng YH: Effects of postgrowth annealing treatment on the photoluminescence of zinc oxide nanorods. J Appl Phys 2006, 99:113509.CrossRef 52. Wang Z, Gong J, Su Y, Jiang Y, Yang S: Six-fold-symmetrical hierarchical ZnO nanostructure arrays: synthesis, characterization, and field emission properties. Cryst Growth Des 2010, 10:2455–2459.CrossRef 53. Li D, Leung YH, Djurisic AB, Liu ZT, Xie MH, Shi SL, Xu SJ, Chan WK: Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl Phys Lett 2004, 85:1601–1603.

Comments are closed.