Prior to the study, physicians were notified about the telemedici

Prior to the study, physicians were notified about the telemedicine robot and the study via a study memo. Physicians

who were interested in participating received a briefing from the research team and gave consent verbally to participate. Survey data was collected anonymously. No patient Wortmannin solubility dmso data was collected. Physicians received a short training on how to maneuver the robot prior and a member of the research team was present at all times to ensure that the research did not interfere with standard clinical activities. Technology The Karl Storz-InTouch VISITOR1™ system is an intraoperative, spring arm mounted communications platform comprised of a ControlStation and Robot. The ControlStation and Robot are linked via the Internet over a secure broadband connection. Through the ControlStation, either installed on a laptop or desktop, a remote physician can gain access to the OR from home or office (Figure 2). The system communicates bi-directionally using TCP and/or UDP, and requires outbound HTTP access to connect to the In Touch Health servers. The VISITOR1 System incorporates encryption methodology utilizing a combination of RSA public/private key and 128-bit AES symmetric encryption. Figure 2 The VisitOR1™ can be remotely operated with through a portable, laptop ControlStation that is linked via the Internet over a secure broadband connection. Survey The survey consisted

of mainly usability and LY333531 concentration technical questions, as well as some descriptive questions about the surgical procedure. Responses were rated using a 5-point Likert scale. Survey questions were pretested among a similar study population in Selleckchem Ipatasertib a previous pilot study. Examples of technical questions include audio/visual capabilities as well as ease of operation of the robot. An independent observer was present Tryptophan synthase in the operating room to ensure the robot did not interfere with the OR activities. In addition to the usability and technical information of the equipment, we also added some questions regarding the ability of the remote physician to grade the injuries observed. Clinicians

were given a copy of the American Association for the Surgery of Trauma (AAST) Scaling System for Organ Specific Injuries [5] Tables as a guide. Grading scales exist for the following organ systems: Cervical Vascular Injury, Chest Wall Injury, Heart Injury, Lung Injury, Thoracic Vascular Injury, Diaphragm Injury, Spleen Injury, Liver Injury, Extrahepatic Billiary Tree Injury, Pancreas Injury, Esophagus Injury, Stomach Injury, Duodenum Injury, Small Bowel Injury, Colon Injury, Rectum Injury, Abdominal Vascular Injury, Adrenal Organ Injury, Kidney Injury, Ureteral Injury, Bladder Injury, Urethra Injury, Uterus (non-pregnant) Injury, Uterus (pregnant) Injury, Fallopian Tube Injury, Ovary Injury, Vagina Injury, Vulva Injury, Testis Injury, Scrotum Injury, Penis Injury, Peripheral Vascular Organ Injury.

Optimization on these three coordinates was performed using a dow

Optimization on these three coordinates was performed using a downhill simplex algorithm in order to minimize the area of femoral neck that intersected this plane. This automated algorithm used the NN region defined above as the initial starting location of the plane. Since the algorithm started with the NN region as the initial CHIR-99021 supplier guess, and this region is between the femur head and greater trochanter, convergence to the plane with the narrowest area was rapid. FNAL was measured perpendicular to this plane through its center of mass from the edge of the femoral head to where

the axis exited the femur distally. To reduce the effects of osteophytes which were prevalent and visible in the QCT dataset, the measurement was repeated eight times along line segments parallel to the neck axis. The eight measurements were OSI-027 concentrically spaced around the neck axis. The final FNAL value was defined as the median of these eight parallel segments and the central measurement. Statistics Parameters calculated from the QCT dataset were considered the gold standard, and the parameters calculated by HSA were compared to QCT by linear regression analysis using GraphPad Prism V 5.03. If the offset (i.e.,

intercept) was not statistically different from zero (p < 0.05), the analysis was repeated with the intercept restricted to zero. In order to test the sensitivity of our results to the

placement of the NN ROI, in addition, the plane through the narrowest part of the femoral neck of the QCT dataset was also used as the basis for an alternate definition of the QCT NN ROI and compared to the HSA NN ROI. Results High linear correlations (r = 0.89–0.95) were found between HSA and QCT for CSA, CSMI, and Z at the NN and IT regions (Figs. 2 and 3). The intercepts of the linear Selleckchem Torin 2 correlation Digestive enzyme of the parameters were not statistically significant (p < 0.05) at the IT region but were statistically significant at the NN region (Table 1). The slopes of these parameters were all different from unity. Fig. 2 The correlation of HSA with QCT for the narrow neck region Fig. 3 The correlation of HSA with QCT for the trochanter region Table 1 Results of the linear correlation of HSA vs. QCT at the NN and IT regions   NN IT Cross-sectional area (cm2) r 0.95 0.93 Offset 0.32 (0.11) N.S. Slope 2.02 (0.10) 2.00 (0.02) SEE 0.13 0.31 Cross-sectional moment of inertia (cm4) r 0.94 0.93 Offset 0.30 (0.12) N.S. Slope 1.19 (0.06) 1.48 (0.03) SEE 0.22 1.40 Section modulus (cm3) r 0.93 0.89 Offset 0.19 (0.07) N.S. Slope 1.32 (0.08) 1.53 (0.03) SEE 0.10 0.50 Width (cm) r 0.95 0.95 Offset N.S. N.S. Slope 0.979 (0.004) 0.978 (0.003) SEE 0.08 0.10 Femoral neck axis length (cm) r 0.90 – Offset N.S. – Slope 1.003 (0.004) – SEE 0.22 – Numbers in parentheses are standard errors. N.S.

Accordingly, some results above this theoretical limit obtained f

Accordingly, some results above this theoretical limit obtained from some particular nanostructures such as nanostars [6] may be attributed to a collective excitation of multiple LSPR modes (though in single nanoparticles), or other chemically induced effects. Our calculations also show that the RI sensitivity is independent of θ (results not shown here). Therefore, the conclusion from Figure 3e must hold true for any incident angles and also for random orientation of nanoparticles. Figure 3 RI-dependent extinction spectra. Near the (a, c) dipole LY2835219 resonance mode of nanorods

of types A and AZD8186 nmr C and (b, d) quadruple resonance mode of nanorods of types B and D, respectively, with all the structures in a surrounding medium of RI varying from 1.33 to 1.37. The black arrows represent the shifting direction of the resonance peak from the case RI = 1.33 to RI = 1.37. The red double arrows denote the linewidth of each peak. Insets are schematics of nanoparticle geometries and their electric near-field amplitude distributions at the corresponding LSPR wavelengths. (e) Peak wavelengths λ sp as a function of the surrounding RI for different LSPR

modes/shapes Selleckchem GANT61 corresponding to (a) to (d). The RI sensitivities dλ sp/dn of the four curves are 712.2, 722.1, 689.3, and 676.9, in the unit of nm/RIU, respectively. Linewidths of quadrupole resonances As mentioned earlier, the resonance linewidth is the other important factor in determining the overall RI sensing performance of LSPRs [28]. Opposite to the RI sensitivity, the resonance linewidth of LSPRs largely depends on the incident angle, as demonstrated in Figure 1b. In addition, for LSPR sensing measurements with typical experimental setups [28], the characterization results are in fact collective effects arising from the total response of a mass of MycoClean Mycoplasma Removal Kit randomly oriented nanoparticles. Therefore, it is necessary to average the linewidth of the simulated extinction spectra at different excitation angles for each structure. The incident angle-dependent extinction spectra for the four

types of Au nanorods are presented in the insets of Figure 4, and the curves in each inset are summed and averaged for calculating the average resonance linewidth, as shown in the main panel of Figure 4. It can be seen that the averaged extinction spectra for nanorods of type A, B, and C are all symmetric with a well-defined resonance linewidth (i.e., full width at half maximum), while the spectrum of type D nanorod exhibits a largely asymmetric profile and needs an extrapolation to extract the resonance linewidth. The resulting resonance linewidths for the four nanorods are 278.6, 186.8, 154.1, and 91.7 nm, respectively. An obvious observation is that the resonance linewidth reduces from dipole modes (types A and C) to quadrupole modes (types B and D) and also from regular nanorod shapes to irregular nanobipyramid shapes.

Wang et al [15] used the AFM-based repeated scratching method to

Wang et al. [15] used the AFM-based repeated scratching method to obtain nanochannels on the silicon oxide surface. From these previous studies, it can be found that the AFM-based nanomechanical method is feasible for machining nanochannels. However, they were only able to fabricate V-shaped nanochannels or quadrate holes. Recently, Arda Gozen et al. [16, 17] developed a nanomilling system with an AFM tip as the small cutting tool to fabricate the three-dimensional and ladder-shaped nanostructures, which is similar to the traditional milling process. In our previous study [18], a width controllable millimeter-scale nanochannel array was also obtained by a modified AFM-based nanomachining system and

the machined nanochannel showed a consistent depth. However, if a nanochannel learn more with ladder structures Alisertib in vitro at the bottom is needed, the stages must be controlled to reposition for secondary SB273005 processing [16, 18] or the normal load applied on the sample must be varied in the scratching process [19]. The reposition of the stage for secondary processing is less efficient especially for large-scale microstructures using the AFM tip-based nanofabrication method. In addition, the normal load must be controlled all the time

according to the movement trajectory of the AFM tip during the whole machining process to obtain a nanochannel with ladder structure at the bottom, which is relatively complicated for the nanochannel fabrication. Therefore, in this letter, we present

a novel and easy AFM-based nanomanufacturing method combining the AFM internal tip scanning cycles with the high-precision stage movement to Urease fabricate nanochannels with ladder nanostructure at the bottom. Using this method, a nanochannel with ladder nanostructure at the bottom can be achieved by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the feeding velocity of the tip and the moving velocity of the precision stage. As such, this nanomachining method has the potential to advance the AFM tip-based nanomanufacturing by increasing the removal speed, simplifying the processing procedure, and achieving the large-scale nanofabrication. Methods Figure 1a shows the schematic of the modified AFM-based nanomachining system. The experimental setup mainly includes a commercial AFM (Q-Scope 250; Ambios Company, Santa Cruz, CA, USA) and two high-precision stages (M511.HD; PI Company, Eschbach, Germany). The detail information of the experimental facilities can be found in [18]. The AFM tip used for all nanoscratching tests is a diamond tip (DNISP; Veeco Instruments Inc., Plainview, NY, USA). This tip is a three-sided pyramidal diamond tip (Figure 1b) with a radius R of 85 nm evaluated by the blind reconstruction method [20]. The cantilever of the probe is made of stainless steel with a calibrated normal spring constant K of 174 N/m provided by the manufacturer.

Therefore, the effect of surface melting is smaller and

t

Therefore, the effect of surface melting is smaller and

the structures are similar to those obtained for the samples evaporated on glass substrate under RT (Figure 3), with the roughness also being only mildly changed. Figure 4 AFM images of the evaporated Au layers on glass heated to 300°C. The thicknesses of evaporated Au were 7, 18, and 35 nm. R a is the arithmetic mean surface roughness in nanometers. The influence of gold nanocluster formation has been also extensively studied [20] on mica. A phenomenological study Selleck BLZ945 was carried out to find a reliable way for the gold thin film preparation. The following parameters have been focused on: annealing time of the substrate before deposition of the gold film, deposition rate of the gold film, substrate temperature before

and during evaporation and annealing time after the deposition [20]. Deposition of Au films on mica with the deposition temperature 500°C led to the similar structures that we achieved on glass heated to 300°C, where pores and whiskers have been observed [20]. The gold nanocluster formation on glass substrate is strongly influenced by the physical processes of vapor-deposited thin gold films on glass substrate [21]. The processes which can alter the layer’s growth may be, e.g., chemical or plasma modification of the substrate [21] or gold and glass wettability [21]. The bonds between the gold clusters and the glass substrates are usually weak, and their wettability is relatively bad. It was reported that the gold nuclei diffusion on the surface is increased, as signaling pathway well as their coalescence, when its wettability is poor [21]. On the contrary, if the wettability of gold for the substrate is improved (chemical modification of the surface), the interactions between the two materials are globally stronger, and both the diffusion and coalescence of the metal clusters are disfavored [21]. Optical properties The UV–vis extinction spectra of Au nanolayers deposited on substrate before aminophylline and after annealing Proteases inhibitor process are introduced in Figure 5. The

absorbance of both annealed and non-annealed gold structures increases with increasing structure thickness as could be expected. From the comparison of the spectra of evaporated and annealed samples, it is seen that the annealed structures have qualitatively different shapes and lower absorbance. Both phenomena arise from structural changes due to annealing. From our previous experiments, which have been focused on the behavior of sputtered gold nanostructures on glass, it was determined that for the sputtered Au, a shift of 530-nm absorption peak was observed [5] which corresponds to surface plasmon resonance. This shift with increasing Au thickness towards longer wavelengths was probably related to the interconnection and mutual interaction of gold nanoparticles in the structure [5].

Figure 4 Sketch drawing of the replicative transposition of Tn ce

Figure 4 Sketch drawing of the replicative transposition of Tn ces :: km into recipient chromosome and the strategy of hybridization. The transposase-mediated fusion of pTnkm and the target molecules generate a third copy of ISces. There are two theoretically possible results of transposition, depending on which ISces is duplicated. Three probes 1, 2, and 3, indicated

by dotted lines, represent an internal fragment of bla in cloning vector pUC18, ISces, and Km, respectively, were used for the survey of the transposition. The NdeI sites in kmRsmR transconjugants were indicated. No matter which ISces was duplicated, hybridization with probe 1 and 3, a 3.5 kb band and a 1.6 kb band is expected, respectively; with probe 2, besides the 1 kb and 3.5 kb expected bands, extra bands with variable sizes in each STA-9090 supplier independent transconjugant are probably detected due to multi-transpositions. Although there is also a (remote) possibility for the duplication of the whole KU-57788 purchase Tnces::km element, the result will be similar except that more bands with probe 2 are expected. Figure 5 Southern blot hybridization analysis of the transconjugants of Tn ces :: km transposition in E. coli HB101. Two independent hybridizations

were performed. A: lane 1–4, independent KmRSmR transconjugants, lane 5, HB101, lane 6, JM109 (pTnkm); and B: lane 1–5, independent KmRSmR transconjugants, lane 6, HB101, lane 7, JM109 (pTnkm). Three probes of Km (a), ISces (b) and blapuc18 (c), respectively were used for hybridization as illustrated in Figure 4. To detect if the transposition of Tnces::Km displayed target site biases, the flanking sequences

of insertion Fenbendazole sites of the transconjugants used in hybridization were determined by primer walking. For three transconjugants, it was found that Tnces::Km insertions occurred in three distinct sites on plasmid R388 and that an 8-bp direct VS-4718 manufacturer repeat (DR) was produced after transposition (Table  2), which is a typical feature of IS6 family members (see the ISfinder database, http://​www-is.​biotoul.​fr) [34]. For the other six transconjugants, although repeated several times, it is difficult to get the flanking sequences of insertion sites by primer walking, probably due to sequence complexity caused by multiple transposition events of ISces. Table 2 DNA sequences flanking the insertion sites after random transposition of IS ces based transposon Tn ces :: km onto R388 Transconjugants Sequence of insertion sites (5’ to 3’) Tn02 GCCAACTTCCAAAGGAAAGAAGCCGCATAACC-ISces-GCATAACCTGCCCTCCCCCGCTCCGGCGGGGG Tn04 GAAGGCCAACGGTGGCGCCCAAGAAGGATTTC-ISces-AGGATTTCCGCGACACCGAGACCAATAGCGGAA Tn05 GAGCGGGCTTTTTTATCCCCGGAAGCCTGTGGA-ISces-CCTGTGGATAGAGGGTAGTTATCCACGTGAAAC The underlined sequences refer to the duplicated target sequences (DR). Discussion The taxonomy of B. cereus group has long been controversial, since many of the species are genetically heterogenous, with the exception of B.

While we controlled the analyses for the clinic site and frequenc

While we controlled the analyses for the Semaxanib supplier clinic site and frequency leaving the neighborhood, a possible limitation of this study is that we did not assess indoor home hazards or variation in neighborhoods with respect to snow removal, quality of sidewalks, Mizoribine and cleanliness. In a large sample of over 8,300 Caucasian community-dwelling women involving the most comprehensive study of risk factors for falls, we identified five potentially modifiable physical risk factors for falls that each contribute to 5%

or more of falls in the population. Lifestyles had an independent association with falls, which suggests that environmental and behavioral risk factors are important causes of falls in older women. Thus, these findings underscore the importance of multidimensional fall interventions which include lifestyle-related environmental

and behavioral risk factors to more effectively reduce the burden of falls in older women. Future research should identify mechanisms through which lifestyle factors and shorter body NVP-BEZ235 height may influence fall risk in older women. Additional research is needed to examine the relative importance of physical and lifestyle factors in men and in women of other ethnic backgrounds and separately in older individuals at high and low risk for falls where the relevance of different risk factor domains may vary dramatically. Conflicts of interest None. Funding This study received funding through these grant numbers: AG05407, AR35582, AG027576-22, AG05394, AG005394-22A1, AR35584, AR35583, AG027574-22A1, and P30 AG024827. Open Access This article is distributed Bay 11-7085 under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited. References 1. O’Loughlin JL, Robitaille Y, Boivin JF, Suissa S (1993) Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly. Am J Epidemiol 137:342–354PubMed 2. CDC (2008) Self-reported falls and fall-related injuries among persons aged > or =65 years–United States, 2006. MMWR Morb Mortal Wkly Rep 57:225–229 3. Centers for Disease Control and Prevention NCfIPaC (2006 [cited 2007 Jan 15]) Web-based Injury statistics Query and Reporting System (WISQARS) [online]. In 4. Kannus P, Parkkari J, Koskinen S, Niemi S, Palvanen M, Jarvinen M, Vuori I (1999) Fall-induced injuries and deaths among older adults. JAMA 281:1895–1899CrossRefPubMed 5. Stevens JA, Corso PS, Finkelstein EA, Miller TR (2006) The costs of fatal and non-fatal falls among older adults. Inj Prev 12:290–295CrossRefPubMed 6. Campbell AJ, Borrie MJ, Spears GF (1989) Risk factors for falls in a community-based prospective study of people 70 years and older. J Gerontol 44:M112–M117PubMed 7.

After the first 90 min, single Rt24 2 cells were visible on the s

After the first 90 min, single Rt24.2 cells were visible on the surface of root hairs (Figure 10A). After 24 h, attachment of numerous Trichostatin A cost Rt24.2 cells to root hairs was seen. Bacteria were located mainly on root hair tops, forming caps and rhizobial clouds (Figure 10B). In the zone of growing root hairs, the majority of the root hairs were coated with Rt24.2 cells (Figure 10C). After 6 days post infection (dpi), infection

threads inside some of the root hairs were initiated or already extended and reached root epidermal cells (Figure 10D). In contrast, Rt2472 cells were seen on the root surface but were attached to the root hairs only sporadically demonstrating a much weaker attachment ability (Figure 10E). The caps formed Ku-0059436 in vitro by rosR cells on the top of root hairs were detected very rarely (Figure 10F). In addition, several root hairs had an atypical, expanded shape resembling ginger roots (Figure 10G) in contrast to the typical curled root hairs in clover inoculated with the wild type. In the case of rosR mutant-inoculated plants, infection threads inside root hairs were observed sporadically, and their elongation was frequently interrupted (Figure 10H). Figure 10 Root attachment and infection of clover roots by the rosR mutant and the wild type. Fluorescence microscopy analyses of clover root colonization and invasion by GFP-expressing cells of R. leguminosarum bv. trifolii wild type (A-D) and the rosR mutant (Rt2472)

(E-H). The Rt24.2 cells attached very fast and effectively to root hairs (A-B), and formed caps on the top of root hairs (C). (D) Curled root hairs with an extended infection thread filled with the wild type cells. The infection thread started from the Shepherd’s Phospholipase D1 crook of the curled root hair and reached the base of root hair. The ability of root attachment and root cap formation of the rosR mutant was substantially decreased (E-F). Only individual cells of the Rt2472 rosR mutant attached to root hairs (E) and root caps were formed sporadically (F). Several root hairs find protocol showed abnormal deformation (G). The root hair colonized by the rosR mutant, which had developed an aborted

infection thread (H). (I) Attachment to clover roots 0.5 h and 48 h post inoculation with the wild type, and the Rt2472 and Rt2441 rosR mutants, and their derivatives complemented with pRC24. For each strain, ten roots were examined. Data shown are the means of two replicates ± SD. (J) Kinetics of curled root hair (CRH) formation, infection thread (IT) initiation and extension on clover plants inoculated with the wild type and the rosR mutant (Rt2472). For each strain, 25 plants were used. Data shown are the means of two experiments. To quantitatively determine the attachment ability to the surface of clover roots, Rt24.2 wild type, Rt2472 and Rt2441 rosR mutants, and their derivatives bearing plasmid pRC24 were incubated with clover roots for 0.5 h and 48 h.

Growth was determined by

measuring the OD600

Growth was determined by

measuring the OD600 VRT752271 chemical structure of the cultures. C. crescentus NA1000 and mutant strains carrying either the empty vector pNPT228XNE or the vector harbouring either czrA or nczA genes were grown in PYE-kanamycin at 30°C with agitation to an OD600 of 0.3. Samples of 10 μl were streaked on PYE-kanamycin plates containing 2% xylose and with or without addition of each of the following metal salts: 35 μM CdCl2, 130 μM ZnCl2, 50 μM CoCl2 and 280 μM NiCl2, and plates were incubated at 30°C for 3 days. Statistical treatment of the data was carried out using Student’s T-Test. Phylogenetic and protein structure analyses Amino acid sequences presenting more than 55% identity with CzrA and NczA were used as an imput for CLUSTALX [40]. The complete list of the protein sequences used is found in Additional file 1: Table S1. The phylogenetic tree was constructed by a neighbor-joining method with 1000 bootstrap replicates using the CLUSTALX program. The multiple sequence alignment was used to create the logo representation of the CzrA and NczA orthologous grups. The figure was generated using the WebLogo server [42] and the height of the residue symbol indicates the degree of conservation. The sequence numbering shown below the logo corresponds to the proteins from C. crescentus NA1000. Homology modeling of CzrA was performed using the PHYRE2 [44] using

as a three-dimensional click here structural template the chain A of E. coli CusA [PDB: 3 k07; [25]. CzrA and CusA share Ribonucleotide reductase 33% sequence identity. The model generated has 100% confidence and 93% coverage. The result was Poziotinib analyzed with the PyMOL Molecular Graphics System, Version 1.5 Schrödinger, LLC [43]. Acknowledgements This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and by Fundação

de Amparo à Pesquisa do Estado de São Paulo (FAPESP). EYV was supported by doctoral fellowship from CNPq. VSB was supported by postdoctoral fellowship from FAPESP. MVM was partially supported by CNPq. Electronic supplementary material Additional file 1: Table S1: Protein sequences used for the phylogenetic analysis of the HME-RND orthologs. (PDF 150 KB) Additional file 2: Figure S1: Sequence conservation profile within the CzrA and NczA orthologous groups. (PDF 1006 KB) Additional file 3: Figure S2: Potential methionine pairs/clusters in CzrA model structure. (PDF 423 KB) References 1. Valls M, de Lorenzo V: Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 2002, 26:327–338.PubMed 2. Mitra RS, Bernstein IA: Single-strand breakage in DNA of Escherichia coli exposed to Cd2 + . J Bacteriol 1978, 133:75–80.PubMed 3. Bruins MR, Kapil S, Oehme FW: Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 2000, 45:198–207.PubMedCrossRef 4.

It is evident that the rise of the

It is evident that the rise of the absorption edge near the band edge for the pure ZnO nanorods (sample S1) increased gradually, while it becomes sharper for the Cu-doped ZnO nanorods (samples S2 to S5), indicating the presence of localized states within the bandgap. The undoped ZnO nanorods (sample S1)

showed lower transmittance (approximately 70%) compared to the Cu-doped ZnO nanorods. This could be attributed to the scattering either from the unfilled inter-columnar volume and voids or from the inclined nanorods. Using www.selleckchem.com/products/Fedratinib-SAR302503-TG101348.html Cu(Selleck STA-9090 CH3COO)2 as the Cu source (samples S2 and S3), the total transmittance increased, reaching approximately 80%, and was found to be independent on the amount of Cu dopants. Comparatively, using Cu(NO3)2 as the Cu precursor (samples S4 and S5), the total transmittance increased further, reaching approximately 90%. Lin et al. [37] related the presence of oxygen vacancies to the transmittance ratio, where lower transmittance indicates that there are Entinostat ic50 more oxygen vacancies and vice versa.

However, in the study reported here, we can attribute the reduction in the total transmittance to the increase in the rod diameter for the samples doped with Cu(CH3COO)2. It can be seen that at the absorption edge for Cu-doped ZnO nanorods, the slight blueshift indicates that the bandgap was tuned by the incorporation of the Cu dopants. It may be observed that there are obvious interference fluctuations in the transmission spectra when Cu(CH3COO)2 was used as the Cu precursor (samples S2 and S3). These fluctuations can be attributed to the presence of scattering centers [36]. Figure 6 Total transmittance spectra of undoped and the Cu-doped ZnO nanorods. Conclusions In conclusion, we explored the effect of Cu precursors (Cu(CH3COO)2 and Cu(NO3)2) and concentration on the structural, morphological, and optical properties of the hydrothermally synthesized Cu-doped

ZnO nanorods. The XRD results revealed that the slight changes in the lattice parameters have occurred due to the substitution of Zn2+ by Cu2+ and the formation of else defect complexes. The nanorods doped with Cu(NO3)2 had less crystallinity than the nanorods doped with Cu(CH3COO)2, where the maximum compressive lattice strain (−0.423%) was obtained when 2 at.% of Cu was added from Cu(NO3)2. From the SEM studies, Cu(CH3COO)2 was found to be an effective precursor for the formation of Cu-doped ZnO nanorods with large diameter. Conversely, Cu-doped ZnO nanorods with a small diameter (approximately 120 nm when 2 at.% was added) can be obtained when Cu(NO3)2 is used as a Cu precursor due to the lack of hydrolysis process. UV and green emission peaks at 378 and 544 nm were observed for all samples and are attributed to the near-band edge UV emission and the defect-related emission, respectively.